
II

THEORETICAL INVESTIGATION OF
OPTICAL COMPUTING

BASED ON NEURAL NETWORK MODELS

Demetri Psaltis, Xiang-Guang Cu, David Brady

Yaser S. Abu-Mostafa



EURITY CLASSIFICATION OF THIS PAGE

Form ApprovedREPORT DOCUMENTATION PAGE O aNO. 070"188

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

Za. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Zb. DECLASSIFICATION/ DOWNGRAOING SCHEDULE UNLIMITED

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFOSR-86-0296 POSR.* . - _ R I

5.. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
California Institute of fapicabie)

Technolo~v AFOSR/NE
6c. ADDRESS (City, Stare, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Coe.)

Department of Electrical Engineering Bldg 410
Mail Stop 116-81
Pasadena CA 91125 Bolling AFB DC 20332-6448

S NAME OF FUNDING i SPONSORING Sb OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERORGANIZATIONi (if appikiceA)

AFOSR/NE AFOSR- 6-0?QA
8c. ADDRESS (City, State, and ZIP Code) 10, SOURCE OF FUNDING NUMBERS

*Bldg 410 PROGRAM 5PROJECT ITASK C ORK UNIT
ELEMENT NO. NO0. INO. IACESSION No.Bolling AFB DC 20332-6448 61102F 2305 B1

11. TITLE (Include Securny Casmfication)

Theoretical Investigation of Optical Computing Based on Neural Network Models

12. PERSONAL AUTHOR(S)
Demetri Psaltis

13a. TYPE OF REPORT 13b. T11b3Se8 14 DATE OF REPORT (Yee, 0 .Oy) 15. PAGE COUNT
Final FROM TO 11/17/88 , 18

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on "wv if necesary and kbnb* by bock number
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on revers if neceuay and identify by block number)

-- The optical implementation of weighted interconnections is investigated and basic
relationships are derived between the number of neurons, the number of connections and
the size of the optical system that is used to perform the connections. Specific
methods for selecting the positions of the neurons to achieve the maximum density of
independent connections are presented. The connectivity of a neural network (number of
synapses per neuron) is related to the complexity of the problems it can handle. For a
network that learns a problem from examples using a local learning rule, it is proved
that the entropy of the problem becomes a lower bound for the connectivity of the
network. '... ,

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSIFIEDAJNLIMITED " SAME AS RPT [1 DTIC USERS TTrT TTn

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
GILES (202) 767-4931 1 NF

DD Form 1473. JUN 86 Previoused *ons are Oboete. SECURITY CLASSIFICATION OF THIS PAGE



TABLE OF CONTENTS

I HOLOGRAPHIC IMPLEMENTATIONS OF NEURAL NETWORKS
1

1.1 Introduction 1

1.2 Optical Interconnections Using Planar Holograms 2

1.3 Optical Interconnections Using Volume Holograms 3

1.4 Conclusion 6

II LOWER BOUND FOR CONNECTIVITY IN LOCAL-LEARNING

NEURAL NETWORKS 11

I.1 Introduction 11

H.2 Local-Learning Networks 12

11.3 Main Result 13

11.4 Conclusion Aocession For 18
NTIS GRAI
DTIC TAB
Unannounced
Justification

Distribution/ OTD'

Availability Codes NSPECTi
Avail and/or

Dist Special



Final Technical Report

THEORETICAL INVESTIGATION OF

OPTICAL COMPUTING
BASED ON NEURAL NETWORK MODELS

Demetri Psaltis, Xiang-Guang Gu, David Brady

Yaser S. Abu-Mostafa

Grant AFOSR-86-0296

Submitted to:

Dr. Lee Giles

Air Force Office of Scientific Research

Boiling Air Force Base

Washington, DC

Principal Investigators

Demetri Psaltis and Yaser S. Abu-Mostafa

Department of Electrical Engineering

California Institute of Technology

Pasadena, CA 91125

-Milo"



_ , W - ! |.. __________•

I

HOLOGRAPHIC IMPLEMENTATIONS OF NEURAL NETWORKS

1.1 INTRODUCTION

One of the attractive features of neural computation is the fact that neural algorithms
can be mapped relatively easily onto analog hardware. The use of simple analog devices
allows for high parallelism in neural hardware and thus for gains in processing power.
Analog VLSI and optics are the two technologies under development for implementations
of artificial neural networks. The advantages of VLSI derive from the maturity of silicon
device fabrication technology and the sophistication of nonlinear semiconductor devices.
The advantages of optical implementations are that three dimensional linear interconnec-
tions may be formed and modified relatively easily using optical holography. This is in
contrast with the constraints on VLSI which confine integrated networks to two dimen-
sions. For neural network models with a large number of connections per neuron, the
area of a VLSI implementation is dominated by the area of the channels which intercon-
nect the processing nodes (the neurons). Optical implementations are typically arranged
as shown in Fig.I.1 with planar arrays of neurons interconnected externally to the plane.
This architecture permits the area of the plane to be fully populated with active devices,
allowing the construction of much larger networks. The disparity between optical and
electronic implementations in terms of the number of neurons per unit area which may be
realized depends on the density with which the neurons are to be interconnected and the
functionality of the neurons.

In this chapter we consider networks with connections which are dense; i.e. each neu-
ron is connected to many others, and irregular; i.e. the strengths of different connections
are different. Each neuron is assumed to perform a simple threshold on a weighted sum of
the activations of the other neurons to which it is connected. In this case it is not neces-
sary to implement one-to-one connections between any two units. Instead a single "bus"
can be used for each neuron that collects the signals from all the units in its receptive
field and delivers the accumulated sum to the neuron. This fact reduces dramatically the
complexity of the hardware needed to perform the interconnections for both the optical
and electronic implementations of neural networks. The simplest VLSI implementation of
this architecture is a cross bar which connects M neurons in area M 2 [1]. In this chapter
we examine the optical implementation of analog summing interconnections and we derive
basic relationships between the number of neurons per unit area at the "neural planes" and
the properties of the optical system that is used to perform the connections. In the optical
implementations the input port to a "neuron" is a light detector and the output port is
an adjacent light source or modulator that is electrically controlled by the the detected
signal. The weighted interconnections between the neurons are realized via holograms that
are placed between the planes. While our discussion is based on a specific architecture
(the Vander Lugt correlator) as an example, the limits we derive and the basic methods
we describe are generally applicable with only minor modifications.



1.2 OPTICAL INTERCONNECTIONS USING PLANAR HOLOGRAMS

A schematic diagram of an optical correlator [2] is shown in Fig.I.2. We will utilize
this same basic architecture throughout the chapter and consider its implementation with
a planar hologram in this section and a volume hologram in the next. A point at the
input plane (P1 in Fig.I.2) is connected to an output point P2 as follows. The first lens
L, collimates the light emanating from P into a single plane wave that illuminates the
hologram. The direction of propagation of this plane wave has a one-to-one correspondence
with the position of P at the input plane. A hologram is placed at the intermediate plane
in Fig.I.2. Its purpose is to diffract the incident light towards points at the output plane
and thus interconnect input points to output points. We can think of the hologram as a
linear superposition of sinusoidal gratings. Each grating diffracts a portion of the incident
wave into another plane wave propagating towards the output plane. The difference in
the direction of propagation of the incident wave and the direction of the diffracted wave
is determined by the spatial frequency and the orientation of the fringes of each grating.
The second lens (L2 in Fig.I.2) converts each of the diffracted waves into a focused spot
whose position at the output plane corresponds to the direction of propagation of the
diffracted beam. In this manner, each sinusoidal grating that is recorded on the hologram
interconnects P1 to an output point. The weight of the connection is determined by the
strength of the recorded grating.

The system of Fig.1.2 is shift invariant. Once the connectivity of a pair of input-output
points is determined by recording the appropriate grating on the hologram, then any other
input point is connected in the same way to the point at the output plane that is shifted
from the original output point by a distance equal to the separation between the two input
points. If such a set of four points were selected for the placement of neurons at the input
and output planes, then it would not be possible to arbitrarily specify the connectivity
between the neurons in the system of Fig.I.2. The strategy that we use in order to provide
independent interconnections between input and output points is as follows. Once an
input/output pair is selected and a grating is recorded for it, then for each additional
input location that is used for the placement of a neuron, the point that is shifted by the
same amount at the output is excluded from being used as a neuron site. Similarly, a point
at the input is eliminated for each additional output point that is used.

This procedure is schematically drawn in Fig.I.3 where the 2-D rectangular grids of
available input (top) and output (bottom) pixels are drawn. A grating that connects two
points is drawn as a solid arrow in this diagram. The use of a second point automati-
cally connects it to the point at the output marked with an X (dotted arrow) and it is
therefore eliminated from the output grid. An analogous diagram is drawn for the use of
an additional output point. In general, with reference to Fig.I.3, each grating recorded in
the hologram specifies an interconnection between only one pair of input/output points if
and only if the diagram formed by connecting any two input neurons and any two output
neurons cannot be a parallelogram. We now use this criterion to address two issues: a)
Capacity, or the maximum number of pixels at the input and output planes that can be
used for the placement of neurons and b) The derivation of appropriate sampling grids
that provide this maximum capacity.

Let us denote by N, (N2) the number of input (output) neurons and let N be the
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number of available pixels in 1-D at the input and output planes. The total number of
connections that need to be implemented is NPN2 and each of these connections must be
realized by a distinct grating in order to be independently specifiable. In the diagram
of Fig.1.3, each distinct grating corresponds to a vector of a given length and direction.
The maximum number of distinct vectors (i.e. each vector having different length and
orientation from all others) that can be drawn in the diagram of Fig.I.3, provides us with
an upper bound for the number of independent interconnections. We can count how many
such vectors there are relatively easily. Pick the point at the lower left corner at the output
in Fig.I.3. N 2 distinct vectors can be drawn from this point to points at the input. If
we pick any one of the other three output corner points, then each of the N 2 vectors
that can be drawn connecting them to points at the input are different except for vectors
connecting to points at the perimeter of the input plane. Subtracting these overcounted
vectors gives us 4N 2 - 4N + 1 for the number of distinct vectors. The order of magnitude
of the interconnection capacity of this system is therefore

Ni N2 _ N 2 . .1)

For example, let N1 = N 2 = 104 . Then from Eq.(I.1) we conclude that in order to imple-
ment this network we must construct an optical system that is capable of accommodating
N - 104 pixels in I-D. This applies not only to the input and output planes but also to the
hologram, which must have resolution equal to N 2 pixels as well. Notice that the input
and output planes are sparsely populated with neurons since only 104 out of the available
10s pixels are used.

We now describe specific methods for selecting which N1 (N 2) pixels out of the avail-
able N 2 pixels at the input (output) plane to use. This selection can be systematically
accomplished in several ways and the resulting sampling grids are not unique. One such
pair of sampling grids is shown in Fig.I.4a. In the input a cluster of N1 = V- x
neurons are used whereas at the output the neurons are arranged on a periodic grid with
period vr+ 1. The total number of neurons that can be accommodated at the output is
N also. We prove that this is a valid sampling grid by showing that it is impossible to draw
a parallelogram on the diagram of Fig.I.4a by connecting any two input points and any
two output points. Such a parallelogram cannot be formed because the edge connecting
two points on the sampling grid at the input plane would be shorter than a(vW + 1)
whereas the edge parallel to it at the output plane would have to be equal to or longer
than a(VN + 1). a is a constant that is determined by the orientation of these two edges.

A different sampling grid is shown in Fig.I.4b. The output grid is the same as in the
previous case but the input is sampled with period VN. We again use the parallelogram
test to show that this is a valid sampling grid. The edge of such a parallelogram connecting
two input points would have length aklV'N7 with k, an integer in the range 0 < k, < V/-.
The edge of this same parallelogram at the output plane would have length ak2( Nv + I),
with k2 an integer in the range 0 < k2 < VW. The smallest pair of integers that can
make the two edges equal is kl = V + 1, k2 = V-N, which is beyond the range of kl.
Therefore, it is not possible to draw a parallelogram in Fig.I.4b which proves the validity
of these sampling grids.

1.3 OPTICAL INTERCONNECTIONS USING VOLUME HOLOGRAMS
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We now consider the interconnecting capabilities of the system in Fig.I.2 with a vol-
ume rather than a planar hologram in the intermediate plane 13,4,S]. The distinction in
the mode of operation between a planar and a volume hologram is the sensitivity of the
volume hologram to the angle of incidence of the illumination. We will discuss the angu-
lar sensitivity of volume holograms with the help of the k-space diagram of Fig.I.5. The
k-space representation is a sphere with radius 21r/A in which the incident plane wave is
drawn as a vector with its origin at the center of the sphere, magnitude equal to 27r/A,
and direction that of the incident plane wave. A is the wavelength of the incident light.
The grating is drawn as a vector with its origin the tip of the incident vector, magnitude
equal to 2r/A, and direction pointing perpendicular to the fringes of the grating. A is the
period of the grating. The diffracted optical wave is drawn as a vector with origin the
center of the sphere and magnitude 27r/A,. The direction of the diffracted wave is taken
to be towards the tip of the grating vector. The efficiency with which light is diffracted
is determined by the difference between this diffracted wavevector and the vector formed
as the sum of the incident and grating vectors [6]. If the tip of the grating vector falls on
the sphere, then this difference reduces to zero and the efficiency is maximized (this is the
Bragg condition). For a finite difference the diffraction efficiency is reduced in proportion
to the square of the thickness of the crystal, i.e. a thicker crystal is more sensitive to an
angular deviation from the Bragg condition.

Returning to Fig.I.2, imagine that a pair of input/output points and a grating have
been chosen such that light originating at the input point produces a plane wave that illu-
minates the hologram at the Bragg angle and the diffracted light is focused at the selected
output point. This situation is drawn in the k-space diagram (Fig.I.5) with the diffracted
vector being the vectorial sum of the incident and the grating vectors. Consider the two
circles that are drawn in Fig.I.S. These circles are formed by the intersection of the k-
space sphere with two planes, both of them perpendicular to the grating vector. One of the
planes contains the origin and the second contains the tip of the grating vector. Consider
an additional incident vector drawn on the k-sphere such that its tip lies on the bottom cir-
cle. The grating that is recorded to interconnect the first two neurons is perfectly matched
to this additional vector. The direction of the diffracted wave is found by forming the
vectorial sum of the additional wavevector and the original grating vector. The tip of the
new diffracted wavevector falls on the upper circle. All such incident and diffracted waves
define a "degeneracy cone" in k-space along which a single grating specifies the connec-
tions of all incident wavevectors that lie on the bottom circle to corresponding diffracted
wavevectors on the upper circle. In order to implement independent interconnections in
this case, the location of the neurons at the input and output planes must be chosen such
that no two input/output pairs share the same degeneracy cone. This condition can be
mapped to the input and output planes as shown in Fig.I.6. The grating is drawn as a
vector connecting a point at the input to a point at the output and the two circles are
approximately mapped to lines perpendicular to the grating vector. In this diagram, the
condition that must be obeyed in choosing the location of the neurons is that the diagram
that is formed by connecting any two input neurons and any two output neurons cannot be
a rectangle. As before, we derive the capacity of the correlator implemented with a volume
hologram and then present specific algorithms for deriving valid sampling grids.
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We can derive an upper bound for the number of independent interconnections that
can be implemented with a volume holographic correlator by starting with the connections
that the system with the planar hologram can implement and then count the additional
connections that are created by the volume hologram. Each distinct vector that can be
drawn in Fig.I.6 connecting an input to an output pixel can be used to perform an inde-
pendent interconnection. From our discussion on planar holograms we know that there
are 4N 2 - 4N + 1 such vectors. With a volume hologram however, each such vector can be
used multiple times because when it is translated along the direction of the vector, then it
is no longer possible to form a rectangle using the origins and the tips of the original and
translated vectors. The maximum number of truly distinct translations we can have for
each vector is upper bounded by N, the number of pixels that are available in one dimen-
sion. Thus, we obtain the upper bound for the number of independent interconnections
that can be implemented with a volume hologram as (4N' - 4N + 1) x N, or more simply
the order of magnitude is

N1 N 2 < N. (1.2)

As an example, if N1 = N2 = 104 then using Eq.(I.2) we find N > 465. Notice, that this
requirement on the space-bandwidth product of the input plane and the optical system
is reduced greatly compared to the planar hologram case. As a result it is possible to
construct much more compact systems when volume holograms are used. Another way
of looking at the distinction between the planar and volume holograms is in terms of the
density with which they allow us to populate the input and output planes with neurons.
For the symmetric case (NI = N2) the number of neurons that can be accommodated by a
plane of fixed space-bandwidth product increases by a factor v7N when a volume hologram
is used.

We now discuss methods for deriving specific sampling grids that achieve the bound
of Eq.(I.2). The design criterion that is used in selecting the locations for the placement
of neurons at the input and output planes is the avoidance of the formation of a rectangle
in the diagram of Fig.I.6, as discussed earlier. The sampling grid shown in Fig.I.7a is
constructed by selecting adjacent v' columns, each having N neurons, as the input
pattern. The maximum separation in the horizontal direction is VN - 1 pixels. If at
the output plane any two neurons are separated by less than / pixels in the horizontal
direction, then the possibility exists that a rectangle can be formed at some angle using
these two output points and two of the input points. In Fig.I.7a this possibility is eliminated
since the output sampling grid consists of VN' columns that are separated by -vN pixels.
Notice that both the input and output planes contain in this case N3 / 2 neurons. A second
possibility is shown in Fig.l.7b. In this case the output pattern is the same as the one in
Fig.I.7a whereas the input pattern is constructed by vW columns, each being separated
from the adjacent column by / + 1 pixels. When we attempt to draw a parallelogram
using two input and two output points on the sampling grids of Fig.I.7b, we find that
this can only be accomplished if the length of the edge that connects the two input points
(akl(v/- + 1)) and the length of the one that connects the two output points (ak2V/)
have equal lengths. kl and k2 are integers and a is a constant. The smallest integers that
satisfy this equation are k,= v, k2 -*N + 1, which both yield an edge that is larger
than N. Hence, it is not possible to form the rectangle within the available N x N input
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and output planes and the sampling grids of Fig.I.7b are shown to be valid.

Notice that the number of neurons in either plane for the two sampling grids we
presented is N x V- - N/ 2 . Equivalently, we can think of them as patterns with fractal
dimension 3/2. The total number of connections that are implemented by the hologram
is NIN 2 = N s . Comparing this result with Eq.(I.2) we find that these sampling grids
provide the full interconnection capacity that is available with a volume hologram.

1.4 CONCLUSION

We described how holograms can be used to provide arbitrary, full interconnection
between two planes of neurons. The methods presented can be extended in relatively
straightforward ways to design other sampling grids and to realize non-symmetric (i.e.
N, $ N2 ) and local interconnections [7). All such sampling grids share the property that
the available degrees of freedom of the hologram are fully utilized. In the case of planar
holograms there are N 2 pixels available in the area of the hologram where as 3-D storage
in volume holograms increases the capacity to N 3 . The overall volume required is in
both cases proportional to N3 (obtained as the product of the area of each plane which
is proportional to N2 and the minimum separation between planes which is proportional
to N). In Table 1 we compare a planar versus a thick hologram in terms of the size of
the optical system required to fully interconnect two layers each having N, = N2 = M
neurons. The required overall volume of the system is M times smaller when a volume
hologram is used. It should be pointed out however that the reduction in system volume
that results from the 3-D storage capability of volume holograms is accompanied by a
reduction in the degree of control we have in storing information. This is due to the fact
that while information is stored throughout the three dimensional medium in a volume
hologram, we can only affect the stored contents through information that we specify on
the two dimensional surface that encloses the hologram [8]. The consequences of this fact
[9] must be included along with the geometrical arguments presented here for a complete
assessment of the relative merits of the two types of holographic interconnections.

Table 1

PLANAR VS. VOLUME HOLOGRAMS

M = Number of Neurons

N = I-D Space Bandwidth Product

2-D 3-D

Linear Dimension M M 2 / 3

Area M 2  M 41 3

Total System Volume M 3  M1

Volume Ratio R = V2-D/V3-D = M
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LOWER BOUND FOR CONNECTIVITY

IN LOCAL-LEARNING NEURAL NETWORKS

Il.1 INTRODUCTION

Learning by example has emerged as the most important question in neural networks.
Clearly, a given neural network cannot just learn any function, there must be some re-
strictions on which networks can learn which functions. One obvious restriction, which
is independent of the learning aspect, is that the network must be big enough to accom-
modate the circuit complexity of the function it will eventually simulate. A restriction
that arises merely from the fact that the network is expected to learn the function, rather
than being purposely designed for the function is reported in (Abu-Mostafa, 1988]. The
restriction imposes a lower bound on the connectivity of the network (number of synapses
per neuron). In this paper, we describe a generalization of this result by removing one of
the requirements on the learning mechanism. Instead of requiring that the training sample
itself be loaded directly into the neurons, we now allow arbitrary features to be extracted
from the sample and loaded into the neurons. This also implies that the number of neurons
can be very large with respect to the number of bits in each sample.

However, our generalized result still assumes a local-learning mechanism. The local-
learning assumption allows only local information to be used by each neuron in its learning
effort. The assumption cannot be completely removed since a powerful learning mechanism
can be designed that will find one of the low-connectivity (e.g., two-input-NAND-gate)
circuits that fits all the training samples, perhaps by exhaustive search. Local-learning is a
strong assumption that excludes sophisticated learning mechanisms used in neural-network
models.

The lower bound on the connectivity of the network is given in terms of the entropy of
the environment that provides the training samples. Entropy is a quantitative measure of
the disorder or randomness in an environment or, equivalently, the amount of information
needed to specify the environment. In section 2, we shall introduce the formal definitions
and results, but we start here with an informal exposition of the ideas involved.

The environment in our model produces patterns represented by N bits x = X1... zN
(pixels in the picture of a visual scene if you will). Only h different patterns can be
generated by a given environment, where h < 2 9 (the entropy is essentially log 2 h). No
knowledge is assumed about which patterns the environment can generate, only that there
are h of them. In the learning process, a number of sample patterns are generated at
random from the environment. A large number of binary features are extracted from each
sample and input to the network, one feature per neuron. The network uses this informa-
tion to set its internal parameters and gradually tune itself to this particular environment.
Because of the network architecture, each neuron knows only its own bit and the bits of
the neurons it is directly connected to by a synapse. Hence, the learning rules are local: a
neuron does not have the benefit of the entire global pattern that is being learned.
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After the learning process has taken place, each neuron is ready to perform a function
defined by what it has learned. The collective interaction of the functions of the neurons
is what defines the overall function of the network. The main result of this paper is
that (roughly speaking) if the connectivity of the network is less than the entropy of the
environment, the network cannot learn about the environment. The idea of the proof is
to show that if the connectivity is small, the final function of each neuron is independent
of the environment, and hence to conclude that the overall network has accumulated no
information about the environment it is supposed to learn about.

11.2 LOCAL-LEARNING NETWORKS

A neural network can be described as an undirected graph (the vertices are the neurons
and the edges are the synapses). Label the neurons 1,... , MI. Each neuron can store one
bit at a time, but it also has access to those bits stored by the other neurons to which
it is directly connected by a synapse. By local learning, we mean that the adjustments a
neuron makes when the network is loaded with a training sample will depend only on the
bits it has access to, namely its own bit and the bits of its neighbors. In other words, the
neuron does not have the benefit of the global picture in its effort to learn, just the bits it
can see locally.

During the learning phase, an unknown environment provides a sequence of training
samples to the network. The environment is a subset e C {0, 1)N (each x E e is a
possible sample from the environment). When the environment produces a sample x,
binary features fl,'" , ,w are extracted from x and loaded into the neurons 1,... W,
respectively (a feature is a function f, : {o,1)N --+ {0,1)). For a given network, the
features fl,"'-, fm are arbitrary but fixed, and M1 (the number of neurons) can be much
larger than N (the number of bits in a sample), e.g., M can be superexponential in N.

As the samples from the unknown environment e come in, each neuron sees the subset
of features carried by itself and its neighbors. Consider an arbitrary neuron that sees K
features (we will assume K < N < JI throughout), and relabel I,..., i to make these
features fl, - ", fx. Based on the values fI,:" ", f assume as x varies over e, the neuron
is supposed to learn about the environment such that, after the learning phase is over, the
collective behaviour of the network is tuned to the environment e that provided the samples.
How the neurons absorb the learning information and what computation the network is
supposed to perform eventually are left deliberately unspecified. The arguments in this
paper are based on the lack of information rather than the failure to use information.

The connectivity is measured by the parameter K. Since our result is asymptotic in N,
we will specify K as a function of N; K = aN where t = a(N) satifies limN--, a(N) = a.
(0 < a. < 1). To formalize the concept of unknown environment, we will consider the
ensemble of environments it of fixed entropy [Abu-Mostafa, 1986]

,6=,6(N)={eC{0,1}N I li=h}

where h = 2PN ( the entropy is essentially log 2 h = ON ) and = 6(N) satisfies
limjv-.o 6(N) = Po (0 < , < 1). The probability distribution on C is uniform; any
environment e E C is as likely to occur as any other.

12



The neuron sees only the K (fixed but arbitrary) functions fl, ", fK of each x gen-
erated by the environment e. For each e, we define the function n : {O, I)K -- {O, 1, 2,...
where

n(az..'aK)=I{xEe I fk(X)=akfork=1,"..,K)

and the normalized version

P(al ... aK)= In(a. " 'K)

The function v describes the relative frequency of occurrence for each of the 2 K binary
vectors fi (x) ... fK (x) as x runs through all h vectors in e. In other words, v specifies the
nonlinear projection of e as seen by the neuron. Clearly, m(a) > 0 for all a E {0, 1)K and
E. 0,1) v(a) = 1.

orresponding to two environments el and e2 , we will have two functions v, and V2.
If ', is not distinguishable from v2, the neuron cannot tell the difference between el and
e2. The distinguishability between v, and V2 can be measured by

i =i,(a)-V()

aE{O,I}Kc

The range of d(vi,v2) is 0 < d(vl,v2) _ 1, where '0' corresponds to complete indistin-
guishability while '1' corresponds to maximum distinguishability. The main result of this
paper is to relate this distinguishability to how the connectivity of the network compares
with the entropy of the environment.

IH.3 MAIN RESULT

Let el and e2 be independently selected environments from 6 according to the uniform
probability distribution. d(vI, 'v2) is now a random variable, and we are interested in the
expected value E(d(vl,v 2 )). The case where E(d(vi,, 2 )) = 0 corresponds to the neuron
getting no information about the environment, while the case where E(d(vl, v 2)) = I
corresponds to the neuron getting maximum information. E(d(vi, v 2)) depends, among
other things, on the choice of the features fl,'" , fK. For example, a poor choice of the
fA's as constant functions forces E(d(vi, v2)) to be zero regardless of K. For which values
of K does there exist a choice of the fk's that makes E(d(V', V2)) close to 1, and for which
values is E(d(v1 , v2 )) close to 0 for all choices of the fk's? The theorem predicts these
extremes depending on how the connectivity (represented by a. in the limit) compares
with the entropy (represented by P. in the limit).

Theorem.
1. If a. > P, then for every N there exist functions fl,' , fK, such that

limN-..o E (d(v, 2')) = 1.
2. If a. < ,then for all functions fl, ",fK for all N, limN.oo E(d(v, 2 )) = 0.

Proof.

13



1. We shall take the functions fi,"'-,fK to be the simple projection functions

fk(zi ."z - ZN) = zk. Thus the neuron sees the first K bits z ... zK of the sample
X = Z ... zN. We start with some basic properties about the ensemble of environments

C. Since the probability distribution on t is uniform and since It = (2 N), we have

which is equivalent to generating e by choosing h elements x E {0, 1 }N with uniform
probability (without replacement). It follows that

h
Pr(x E e) = h

while for x, 3 X2,

Pr(xi E e x 2 E e) = h h-l ' 2N -I

and so on.
The functions n and v are defined on K-bit vectors. For the above choice of the

functions fI ... fK, the statistics of n(a) (a random variable for fixed a) is independent of
a

Pr(n(al) = m) = Pr(n(az) = m)

which follows from the symmetry with respect to each bit of a. The same holds for the
statistics of &,(a). The expected value E(n(a)) - h2- K (h objects going into 2K cells),
hence E(v(a)) = 2 -, .

We expand E (d(vi, v2)) as follows

E (dC, Y2)) = E IL,'(a) - L2(a)

E "E(Jni(a)-n 2 (a)l)

2K -ECn, - n21)

where n, and n2 denote n.(0... 0) and n2(0... 0), respectively, and the last step follows
from the fact that the statistics of nl (a) and n2(a) is independent of a. Therefore, to
prove the first part of the theorem, we assume a, > f , and evaluate E(In1 - n 2 1) for large
N. Let n denote n(0... 0), and consider Pr(n = 0). For n to be zero, all 2 N-K.strings x
of N bits starting with K O's must not be in the environment e. Hence

h (1 h h
Prn = 0) (--) (I - 1- -
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where the first term is the probability that 0... 00 i e, the second term is the probability
that 0... 019! e given that 0-.. 00 i e, and so on.

> (1- 2 N -2 ) N-

- (I - h2N(1 - 2

(1 - 2h2-N)2N
- K

> 1 - 2 h2 -N 2 N

1 - 2h2- K

Hence, Pr(n, - 0) - Pr(n2 - 0) = Pr(n = 0) _ 1 - 2h2 - K. However, E(ni) = E(n 2) -
h2K. Therefore,

h h

E(Ini n21) E ~Pr(n, = i,n2 = i-iIj
i=O j=0

h h

= ZZ Pr(ni = i)Pr(n2 = j)Ii -Ai
i=0 j=0

>- Z Pr(n, = 0)Pr(n2 = j)j
j=O

h

+ E Pr(n, = i)Pr(n2 = 0)i
i=0

which follows by throwing away all the terms where neither i nor j is zero (the term where
both i an j are zero appears twice for convenience, but this term is zero anyway).

= Pr(n, = O)E(n 2) + Pr(n2 = O)E(n1 )

_ 2(1 - 2h2K-K)h2
- K

Substituting this estimate in the expression for E(d(v', v2)), we get

2K

E(d(viv2))= y-E(In, - n21)

2K  -~2-
> - x 2(1 - 2h2K)h2K

= 1 -2h2 - K

= 1 - 2 x 2(0- *)N

Since a. > 6. by assumption, this lower bound goes to 1 as N goes to infinity. Since 1
is also an upper bound for d(v, v2) (and hence an upper bound for the expected value
E(d(vi', v,2))), limN-.. E(d(vl, v2 )) must be 1.
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2. Assume a < P., and consider arbitrary functions fl,"" , fK. Define

hi(a) - {x E {0,1}NI fk(x) = ak for k 1,.,K})

We expand E(d(P1 , V2)) as follows

E(d(Pj, v2)) -1 E(jn1 (a)-n 2(a)I)

1-" E (I(nI(a) - t(a)) - (n2(a) - f(a))I)
LE{0,i}K

1 E(~n1(') - t,(a)1 + Inz(') - ft(a)1)

aE{o,I)"

E E(ln-(a) - n,(a)l) + E(1n2 (a) -(a))

I
&a:{O,1)iK

aE{o,I}K+

The statistics of n(a) now depends on a since the functions fi"" IK are arbitrary. To
evaluate E(jn(a) - ft(a)I), we first show that n(a) = E then estimate the variance
of n(a) and use the fact that E(In(a) - E(n(a))) < /var(n(a)). We write

-Ca)=6(,a x
XE(0,1)"

where 6(x,a) = 1 if ft(x) = ak for k = 1,-.. ,K and is zero otherwise, and 6(x) = 1 if
x E e and is zero otherwise (while 6(x, a) is fixed for given x and a, 6(x) is a random
variable for a given x). Hence

E(n(a)) 6 (x, a) E (6(x))

The expected value of 6(x) is Pr(x E e) = h/2N. Factoring this out, we are left with
YxE{O,)N 6 (x,a) whichequals I{XE {0,1}N I fk(x)=k fork=1,...,K}I, hence
E(n(a)) indeed equals n(a).

Since var(n(a)) = E((n(a))2 ) - (E(n(a)))2 , we need an estimate for E((n(a))2 ).

E((n(a))') "- E o(xI, )6(x2,a)b(xI)b(x2)

= (Xi , X2 a)E(,6(x,)6(x 2 ))

X1 X,
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For the 'diagonal' terms (xl = x2), we get _ 6(xa)E(6(x)) (since 62 -6), which equals
ht(a). For the 'off-diagonal' terms (xI $ x2 ), we get

E 6(:x,,a)6(x2,. )E(6(xj)6(x,))
XI X20XI

=E 1 6(x 1,a)6(x 2 ,a)Pr(x 1Ee,x2 Ee)
X 2h=h- 

1)
SE 6(xj'a)b(x2a)2 (2 N - 1)

Xl X20XI

E (XIa) 6 (X 2 , A) h(h - 1) 6(x,) h(h- 1)

XI x a 2-(2Jv --1) x 2 N(2 N- 1)

The last step follows by adding and subtracting the missing terms of the double summation.
Noting that ft(a) = h E6(x,a), this can be rewritten as

2N(h - 1) (ft(a))2 _ h -1 n(a)
h(2N - 1) 2N -'I

Putting the contributions from the diagonal and off-diagonal terms together, we get
2N~h -1) 2 h-i1n

E((n(a))2 ) = l(a) + h(2N - 1) (())- 2N - t(a)
- (2 - 1) 2 N -

h(2N - 1)(F'(a))2 + 2 N

var(n(a)) = E((n(a))2 ) - (E(n(a)))2

2N(h - 1) 2N -h
0h(2N - (sIa)) 2 + 2N - 1f(a) - (n(a)) 2

h-2N 2N -h
h(2N - 1)(i(a))2 + 2 N - hn(a)

2N-h ( ()!

2N -h

< 2 N 1t

< n(a)

Thus we have E(In(a) - f(a)I) < v</ar(-na))5 _l"'. Now, we rewrite the estimate for
E(d(vi, v2 ))

1
E(d(vi, 02)):5 E(In~a) - (a)j)

:5 :Vft-(a)aE(O,i})IC
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The values of the individual 1(a) will depend on the choice of f ... fK. However,
Ear{0,l)K n(a) always equals h (from the definition of ft(a)). Therefore, one can obtain

an upper bound for E(d(vi, v2)) by maximizing X]e,{o,1)K ' subject to

Eae{ol}K f(a) = h. The maximum occurs when all n(a) are equal (= h2-K). Hence,

E(d(v1 ,v 2)) _< '2KViWY 2S  - 2 1(a-P)N. Since a. < ft. by assumption, this
upper bound goes to 0 as N goes to infinity. Since 0 is also a lower bound for d(VL, V2)

(and hence a lower bound for the expected value E(d(v ,z2))), limv--.. E(d(Vf, V2)) must
be 0.E

11.4 CONCLUSION

We have shown that, under the assumption of local learning, each neuron must have at
least a certain number of synapses in order to be able to distinguish between environments
based on the statistics of information it sees. While the result is expressed as a limit,
it is seen in the proof that the rate of convergence to this limit is exponential in N, the
dimensionality of the problem. Further work should address the weakening of the local-
learning assumption, perhaps by restricting the amount of global information flow or by
restricting the ability of the neuron to make use of the information it sees (e.g., by modeling
its learning mechanism as a finite-state machine).
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